\qquad

C.U.SHAH UNIVERSITY

Summer Examination-2019

Subject Name: Numerical Methods

Subject Code: 4SC04NUM1

Branch: B.Sc. (Mathematics, Physics)

Semester: 4
Date:24/04/2019
Time: 02:30 To 05:30
Marks: 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Attempt the following questions:

a) State Weddle's rule.
b) Using Euler's method, the value of $y(0.1)$ for $y^{\prime}=1-\frac{2 x}{y}, y(0)=1$ is
\qquad —.
c) In the second derivative using Newton's forward formula, what is the coefficient of $\Delta^{2} f\left(x_{0}\right)$ is
1)
$-\frac{1}{h}$
3)

$$
\begin{equation*}
-\frac{1}{h^{2}} \tag{01}
\end{equation*}
$$

2)

$\frac{1}{h^{2}}$
4)
$\frac{1}{h}$
d) The root of the equation $f(x)=0$ in the interval (a, b) is given by
1)
$\frac{a f(b)-b f(a)}{f(b)-f(a)}$
2) $\frac{b f(a)-a f(b)}{f(b)-f(a)}$
3)
$\frac{b f(a)-a f(b)}{b-a}$
4) $\frac{a f(b)-b f(a)}{b-a}$
e) Varies type of Runge-Kutta methods are classified according to their

1) degree
2) rank
3) order
4) none of these
f) Taking $n=4$, trapezoidal rule gives the value of $\int_{1}^{2} \frac{d x}{x}$ is
5) 0.679
6) 0.673
7) 0.637
8) 0.697
g) The method which do not require the calculations of higher order derivatives is
9) Taylor's method
10) R-K method
11) both 1) and 2)
12) none of these
h) Milne's corrector formula is
13)

$$
\begin{array}{ll}
\text { 1) } & y_{4}=y_{2}+\frac{h}{3}\left(f_{2}+4 f_{3}+f_{4}\right) \tag{01}\\
y_{4} & =y_{2}+\frac{h}{3}\left(f_{2}+f_{3}+4 f_{4}\right)
\end{array}
$$

2) $y_{4}=y_{2}-\frac{h}{3}\left(f_{2}+f_{3}+4 f_{4}\right)$
3) $y_{4}=y_{2}-\frac{h}{3}\left(f_{2}+4 f_{3}+f_{4}\right)$
i) The Newton-Raphson iterative formula for finding $\frac{1}{N}$ is $x_{i+1}=x_{i}\left(2-N x_{i}\right)$.
(True/False)
j) Taylor's series method will be useful to give some starting values of Milne's method. (True/False)
k) The second order Runge-Kutta formula is Euler's method. (True/False)
l) Newton-Raphson method is applicable to the solution of both algebraic and transcendental equations. (True/False)

Attempt any four questions from Q-2 to Q-8

a) Compute $f^{\prime}(3)$ and $f^{\prime \prime}(3)$ from the following table

x	0	5	10	15	20
$f(x)$	1.5708	1.5738	1.5828	1.5981	1.6200

b) Derive differentiation formulae based on Newton's Backward formula.
c) Apply Euler-Maclaurin sum formula to find the sum $1^{3}+2^{3}+3^{3}+\cdots+n^{3}$.
a) Compute $y(0.5)$, by Milne's predictor corrector method from $\frac{d y}{d x}=2 e^{x}-y$ given that $y(0.1)=2.0100, y(0.2)=2.0401, y(0.3)=2.0907, y(0.4)=$ 2.1621.
b) Given $\frac{d y}{d x}=1-\frac{y}{x}$ when $y(2)=2$, compute $y(2.1)$, by Euler's modified method, correct up to four decimal places, taking $h=0.05$.
c) Derive differentiation formulae based on Newton's divided difference formula.

